Skip to main content

Problèmes de Maths

Problèmes de Maths

Une idée pour motiver nos élèves.

  • Un problème de Maths posé sur une semaine
  • La solution proposée la semaine suivante
Enoncé du problème n° 69

Les pages d’un livre sont toutes numérotées.
J'ai additionné tous les numéros des pages mais étourdi je me suis trompé, j'ai compté une page deux fois et j'ai trouvé 2018.
Quelle page a été comptée deux fois et combien de pages possède le livre au total ?

Correction du problème n° 69
Les pages d’un livre sont toutes numérotées.
J'ai additionné tous les numéros des pages mais étourdi je me suis trompé, j'ai compté une page deux fois et j'ai trouvé 2018.
Quelle page a été comptée deux fois et combien de pages possède le livre au total ?
Soit \(n\in\mathbb{N} \) le nombre total de pages du livre et \(k\in\mathbb{N} \) la page comptée deux fois.
On sait que \(1\leq k \leq n\) $$1 + 2 + 3 + 4 + 5 +\ldots +(n-2)+(n-1)+ n+k= 2018$$ Rappel : somme des premiers entiers : $$1 + 2 + 3 +\ldots(n-2 )+(n-1)+ n = \dfrac{n(n+1)}{2}$$ On cherche donc \(k\) entier tel que $$\begin{array}{rl} 1+2+3+4+5+\ldots +(n-2)+(n-1)+ n+k= 2018&\iff \dfrac{n(n+1)}{2}+k=2018 \\ & \iff n(n+1)+2k=4036\\ &\iff n^2+n+2k-4036=0 \end{array}$$ On obtient un polynôme de degré 2 dont l’inconnue est un nombre entier naturel.
C’est une équation diophantienne. $$\Delta = 1-4\times 1\times(2k-4036) = 16145-8k$$ On cherche alors les valeurs de \(k\) qui font de \(16145 -8k\) un carré parfait.
Le script Python pour obtenir les solutions

# Lecteur etourdi	
from math import *
	 	L=[]
	 	for k in range(1,200):
	 	P=sqrt(16145-8*k)
	 	if sqrt(16145-8*k)==int(sqrt(16145-8*k)):
	 	L.append(k)
	 	print(L)
	 	
	 	def sol(k):
	 	return  -1/2+sqrt(16145-8*k)/2 
	 	Sol=[]
	 	for k in L:
	 	if k+sol(k)*(sol(k)+1)/2==2018:
	 	Sol.append(k)
	 	
	 	print(Sol) 
	 	
	 	for k in L:
	 	print(k+sol(k)*(sol(k)+1)/2)
Conclusion: parmi les trois candidats à être solutions : 2;65;127;188 seul 2 convient.
J'ai donc un livre de 63 pages et j'ai ajouté deux fois la page 2.

D'autres problèmes ?

Problème n° 119

Problème n° 118

Problème n° 117

Problème n° 116

Problème n° 115

Problème n° 114

Problème n° 113

Problème n° 112

Problème n° 111

Problème n° 110

Problème n° 109

Problème n° 108

Problème n° 107

Problème n° 106

Problème n° 105

Problème n° 104

Problème n° 103

Problème n° 102

Problème n° 101

Problème n° 100

Problème n° 99

Problème n°98

Problème n° 97

Problème n° 96

Problème n° 95

Problème n° 94

Problème n° 93

Problème n° 92

Problème n° 91

Problème n° 90

Problème n° 89

Problème n° 88

Problème n°87

Problème n° 86

Problème n° 85

Problème n° 84

Problème n°83

Problème n° 82

Problème n° 81

Problème n° 80

Problème n° 79

Problème n° 78

Problème n° 77

Problème n° 76

Problème n° 75

Problème n° 74

Problème n° 73

Problème n° 72

Problème n°71

Problème n° 70

Problème n° 69

Problème n° 68

Problème n° 67

Problème n°66

Problème n° 65

Problème n° 64

Problème n°63

Problème n° 62

Problème n° 61

Problème n° 60

Problème n° 59

Problème n° 58

Problème n° 57

Problème n°56

Problème n° 55

Problème n° 54

Problème n° 53

Problème n° 52

Problème n° 51

Problème n° 50

Problème n° 49

Problème n° 48

Problème n° 47

Problème n° 46

Problème n° 45

Problème n° 44

Problème n° 43

Problème n° 42

Problème n° 41

Problème n° 40

Problème n° 39

Problème n° 38

Problème n° 37

Problème n° 36

Problème n° 35

Problème n°34

Problème n° 33

Problème n°32

Problème n°31

Problème n°30

Problème n°29

Problème n°28

Problème n°27

Problème n°26

Problème n°25

Problème n°24

Problème n°23

Problème n°22

Problème n°21

Problème n°20

Problème n°19

Problème n°18

Problème n°17

Problème n°16

Problème n°15

Problème n°14

Problème n°13

Problème n°12

Problème n°11

Problème n°10

Problème n°9

Problème n°8

Problème n°7

Problème n°6

Problème n°5

Problème n°4

Problème n°3

Problème n°2

Problème n°1